Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming

نویسندگان

  • Nicholas I. M. Gould
  • Dominique Orban
  • Annick Sartenaer
  • Philippe L. Toint
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their local and superlinear conver...

متن کامل

Q - Superlinear Convergence O F Primal - Dual Interior Point Quasi - Newton Methods F O R Constrained Optimization

This paper analyzes local convergence rates of primal-dual interior point methods for general nonlinearly constrained optimization problems. For this purpose, we first discuss modified Newton methods and modified quasi-Newton methods for solving a nonlinear system of equations, and show local and Qquadratic/Q-superlinear convergence of these methods. These methods are characterized by a perturb...

متن کامل

A Primal-Dual Exterior Point Method for Nonlinear Optimization

In this paper, primal-dual methods for general nonconvex nonlinear optimization problems are considered. The proposed methods are exterior point type methods that permit primal variables to violate inequality constraints during the iterations. The methods are based on the exact penalty type transformation of inequality constraints and use a smooth approximation of the problem to form primal-dua...

متن کامل

Effects of Finite-Precision Arithmetic on Interior-Point Methods for Nonlinear Programming

We show that the e ects of nite-precision arithmetic in forming and solving the linear system that arises at each iteration of primal-dual interior-point algorithms for nonlinear programming are benign. When we replace the standard assumption that the active constraint gradients are independent by the weaker Mangasarian-Fromovitz constraint quali cation, rapid convergence usually is attainable,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001